Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation

نویسندگان

  • Dongsun Lee
  • Joo-Youl Huh
  • Darae Jeong
  • Jaemin Shin
  • Ana Yun
  • Junseok Kim
چکیده

Article history: Received 19 June 2013 Received in revised form 9 August 2013 Accepted 12 August 2013 Available online 14 September 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

The Spectral Method for the Cahn-Hilliard Equation with Concentration-Dependent Mobility

In this paper, we apply the spectral method to approximate the solutions of Cahn-Hilliard equation, which is a typical class of nonlinear fourth-order diffusion equations. Diffusion phenomena is widespread in the nature. Therefore, the study of the diffusion equation caught wide concern. Cahn-Hilliard equation was proposed by Cahn and Hilliard in 1958 as a mathematical model describing the diff...

متن کامل

The Dynamics and Coarsening of Interfaces for the ViscousCahn - Hilliard Equation in One Spatial

In one spatial dimension, the metastable dynamics and coarsening process of an n-layer pattern of internal layers is studied for the Cahn-Hilliard equation, the viscous Cahn-Hilliard equation, and the constrained Allen-Cahn equation. These models from the continuum theory of phase transitions provide a caricature of the physical process of the phase separation of a binary alloy. A homotopy para...

متن کامل

Mixed variational potentials and inherent symmetries of the Cahn-Hilliard theory of diffusive phase separation.

This work shows that the Cahn-Hilliard theory of diffusive phase separation is related to an intrinsic mixed variational principle that determines the rate of concentration and the chemical potential. The principle characterizes a canonically compact model structure, where the two balances involved for the species content and microforce appear as the Euler equations of a variational statement. ...

متن کامل

Microscopic derivations of several Hamilton–Jacobi equations in infinite dimensions, and large deviation of stochastic systems

We consider Hamilton–Jacobi equations which characterize optimal controlled partial differential equations of the following types: the Allen–Cahn equation, the Cahn–Hilliard equation, a nonlinear Fokker–Planck equation, and aVlasov–Fokker–Planck equation. In each of the examples, the optimal control problem and its associated cost functional can be derived as limit from a microscopically define...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013